skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kwon, Kyounghee Hazel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent policy initiatives have acknowledged the importance of disaggregating data pertaining to diverse Asian ethnic communities to gain a more comprehensive understanding of their current status and to improve their overall well-being. However, research on anti-Asian racism has thus far fallen short of properly incorporating data disaggregation practices. Our study addresses this gap by collecting 12-month-long data from X (formerly known as Twitter) that contain diverse sub-ethnic group representations within Asian communities. In this dataset, we break down anti-Asian toxic messages based on both temporal and ethnic factors and conduct a series of comparative analyses of toxic messages, targeting different ethnic groups. Using temporal persistence analysis, 𝑛-gram-based correspondence analysis, and topic modeling, this study provides compelling evidence that anti-Asian messages comprise various distinctive narratives. Certain messages targeting sub-ethnic Asian groups entail different topics that distinguish them from those targeting Asians in a generic manner or those aimed at major ethnic groups, such as Chinese and Indian. By introducing several techniques that facilitate comparisons of online anti-Asian hate towards diverse ethnic communities, this study highlights the importance of taking a nuanced and disaggregated approach for understanding racial hatred to formulate effective mitigation strategies. 
    more » « less